

New PZT MEMS Tunable Optics Technology & Solutions MEMS & Sensors Technical Congress-MSTC 2022 April 27, 2022 😞 POLIGht

Executive summary

- poLight, a global tunable optics company, has developed an Optical MEMS product, as well as a technology platform, which enables new solutions where electronic tuning of an optical function is required. poLight's Auto Focus (AF) TLens® PZT MEMS and Driver offer fastest focus speed, lowest power consumption, ultra-compact design and with no gravity sensitivity for AF or focusing functions that fit smartphone applications, AR, other wearable and consumer devices, and industrial as well medical applications.
- poLight will present the piezo MEMS structure and performances of the TLens® AF products, and advanced concepts such as wide FOV optics, Optical Image Stabilization (OIS) beam steering, and tunable wedge ultraresolution components based on the same technology platform. Commercially available products using TLens® will also be presented.

Today's agenda

- poLight Introduction
- TLens® Technology & Products
- Optics Design Examples
- MEMS and Polymer Technology Roadmap
- Q&A

Presenting

Pierre Craen

Chief Technology Officer

Pierre Craen is a senior executive with more than 30 years' experience in opto-mechanical system engineering. Prior to joining poLight, he has managed product development and teams in different companies, Spacebel Instrumentation (Belgium), BARCO (Belgium-USA), Zebra (former Motorola/Symbol) (USA), Sagem-Reosc (France), Varioptic (France). poLight (Norway). Pierre Craen Educational background includes M.Sc. degree in optical engineering from Institute d' Optique Graduate school of Paris-France, M.Sc. Degree in Optoelectronic from University of Liege-Belgium. M.Sc. Applied Physics from University of Liege-Belgium.

Tristan Joo

VP or N. America Business Development & Corporate Marketing

Tristan is a 27-year veteran business executive with extensive experiences in business development, marketing and general management in mobile, consumer, industrial and XR markets, and across imaging/optical sensors semiconductor and OEM devices, while scaling the businesses to industry's #1 positions. Prior to joining poLight ASA in June 2021, he was at Ofilm as VP of N. America Market Development for compact camera/3D sensing modules, at ams AG as Sr. Director & GM building up its ToF/3D Sensors PL, at Maxim Integrated starting up its Optical Sensors PL incl. P&L ownership, as well as at LensVector, a solid-state optical actuator startup. Tristan started his career as a founding Product Manager at Samsung Mobile, then moved into semiconductors at IBM Microelectronics, marketing RF/MS & image sensor ASIC/foundry technologies. Tristan holds an MBA from Darden School (UVA) and a BSEE degree, and is based in W. San Jose. CA.

poLight at a glance

Background and description

- Global player in tunable optics with 1st TLens® products used in the mobile, consumer, barcode, industrial, augmented reality and other markets
- Founded in 2005 and has since developed state-ofthe-art expertise in tunable optics, polymers, MEMS technology and image applications and processing
- Holds 16 worldwide patents families, 10 pending applications and 3 registered trademarks
- 35 employees (incl. consultants), actively expanding
- Headquartered in Horten, Norway, with offices in Finland and China with representation in France, UK, USA, Taiwan, Russia, Korea and Japan
- Listed company since 1st October 2018 on Oslo Stock Exchange

Geographical footprint

poLight enables unique use cases

poLight products & technology well-suited for several applications

Smartphones and wearables

- Large addressable market for which billions of cameras are produced for the each year
- 1,5 billion phones per year with 1 front camera and an average of 3 back cameras
- Increasing demands on both camera functionality and battery life
- Potential addressable market for TLens®/poLight technology estimated at 3 billion units per year

Barcode/Industrial

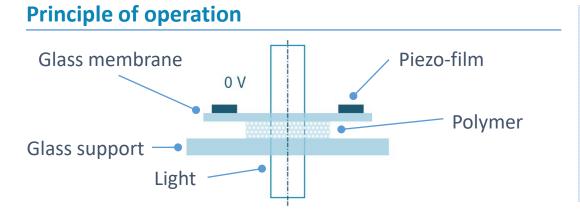
- Evolving from 1D laser to 2D imaging barcode readers
- Lasers replaced by camera systems, where autofocus will improve efficiency in scanning and portfolio
- Barcode technology is spreading to new industries
- OEM scan engine vendors today are increasingly looking to enable machine vision capabilities on their current offerings

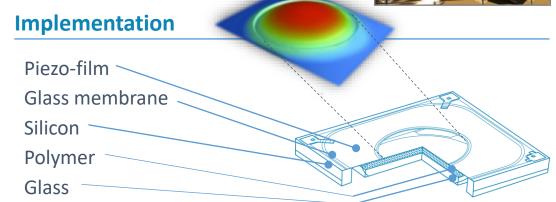
Augmented Reality (AR)

 AR is expected to to grow significantly as the technology is rapidly expanding beyond entertainment and gaming to an increasing number of industrial, commercial, educational applications and later become a consumer device

Other

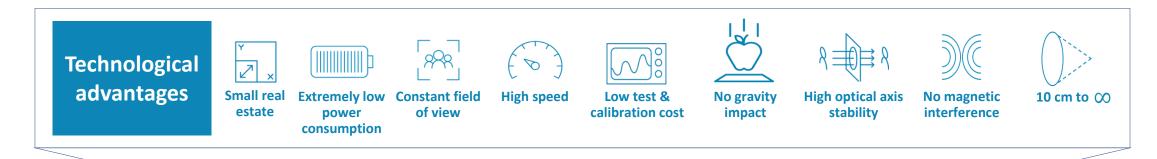
- New opportunities are emerging that could represent significant potential
- Video conferencing and endoscopy are just two examples of new opportunities for poLight technology


TLens® customer-wins **XIAOMI Mi Bunny 4 Pro** smart watch **MAXHUB UC W20** Augmented reality - world-facing camera ımosıx **XUN** Honeywell **Smartwatch Machine Vision** MAXHUB® EX 30 barcode - direct marking reading **Max Pro** scanner Barcode reader - assembly line **XUU**山台 Honeywell

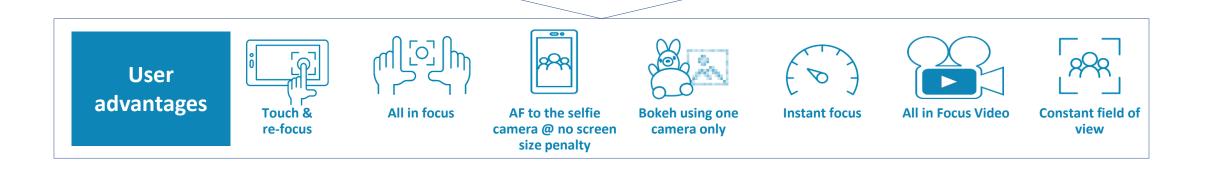


TLens® Actuator: Enabling Smallest, Lowest Power, Fastest AF Cameras and Projectors

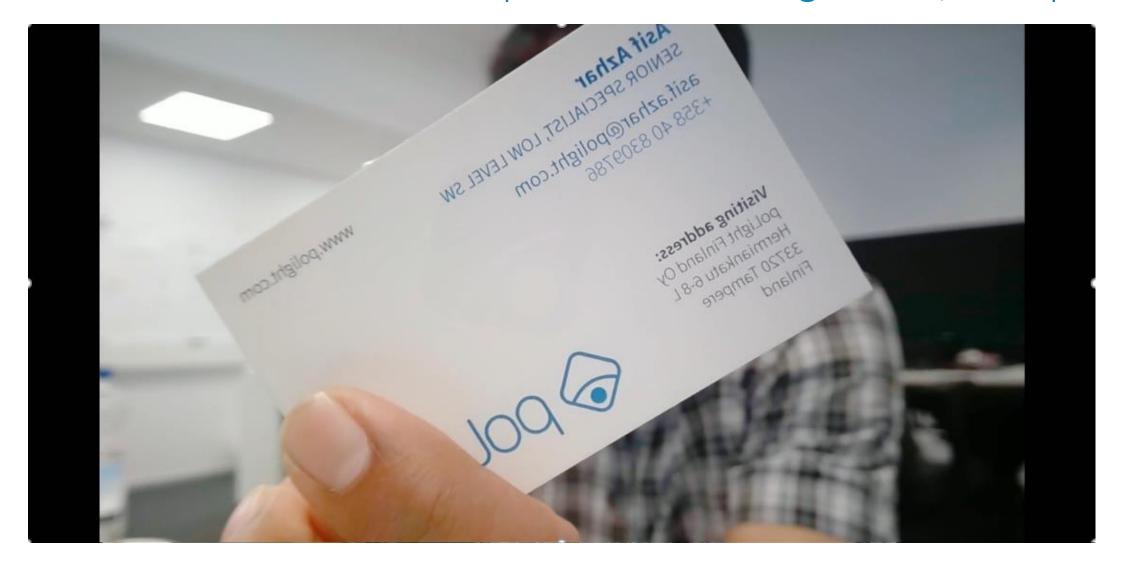
From Polymer Gel > MEMS Wafer > TLens® > Camera Modules > OEM


TLens® AF product family in numbers: Typical values

	Unit	Silver	Silver Premium	Platinum
TLens® AF Front Aperture Diameter	mm	1.55	1.90	>2.20
TLens® AF Back Window Aperture Diameter	mm	2.0	2.25	>2.55
TLens® AF size	mm	3.2 x 3.2 x 0.4	3.2 x 3.2 x 0.4	3.75 x 3.75 x 0.4
TLens® AF size with Package (incl. light baffle)	mm	4.4 x 4.9 x 0.55	4.4 x 4.9 x 0.55	4.9 x 6.1 x 0.55
Maximum Optical power (@47V)	dpt	14	9	7
Wavefront Error (RMS WFE) over useful aperture	nm	30	35	45
Transmittance in visible spectrum	%	94%	94%	94%
Response time	ms	1	1	2
CM: 1/4", 8M and over, 82° FOV	F#	> 2.0	> 1.5	> 1.3
CM: 1/3", 13M and over, 82° FOV	F#	> 2.3	> 1.8	> 1.6
CM: 1/2.8", 16M and over, 82° FOV	F#	> 2.4	> 1.9	> 1.7
Commercial availability		Now	Now	TBD
TLens® Operating Temperature*	°C	-20 to +85	-20 to +85	-20 to +85
Driver ASIC		PD50 (50V)	PD50 (50V)	PD50 (50V)

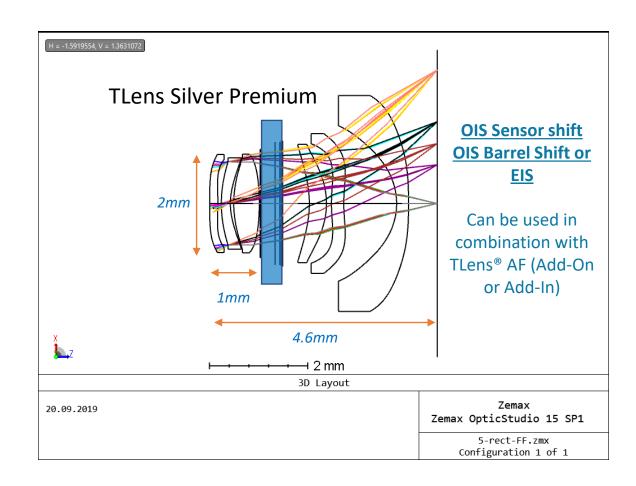

^{*} CM with TLens® operating temperature range will be limited by CM thermal stability

polight Tlens® offers the most to the user and OEM's



Supported by top Camera Module makers

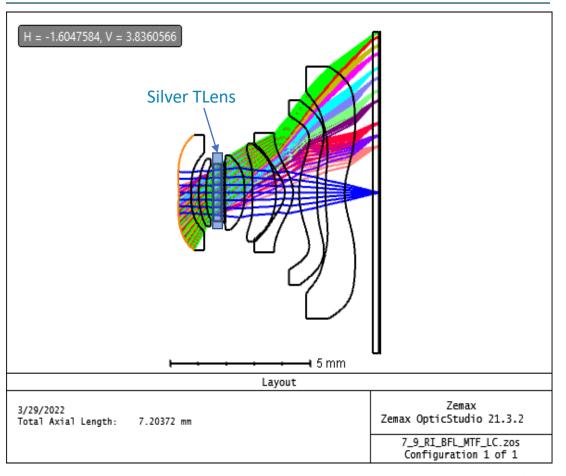
TLens® Demo: Fast AF @ 120 fps AF Hill Climbing search, 16M pixel



TLens® Add-In design for Hybrid OIS camera

ltem		Design values			
Lens Module Nose Diameter		2.0 mm (optical)			
Lens Module Nose Length		1.0 mm			
CMOS Size	1/3" (D=6.475 mm)	1/3" (D=6.475 mm)			
CMOS Pixel Size	1 μm × 1 μm				
CMOS Image Size	6.2 mm diagonal	6.2 mm diagonal			
EFL	3.78 mm				
R Filter thickness					
F/#	2.2				
Optical Total Track	4.6 mm	4.6 mm			
Back Focal Length (optical)	0.6 mm	0.6 mm			
	Diagonal	Diagonal 77			
OV (Degree)	Vertical	42.6			
	Horizontal	69	69.4		
ΛΤF		S			
	500 cyc/mm	23%	23%		
On Axis	250 cyc/mm	48%	48%		
	125 cyc/mm	73%	73%		
	500 cyc/mm	3%	17%		
30% Field	250 cyc/mm	36%	49%		
	125 cyc/mm	65%	73%		
lax Optical / TV Distortion		2.43/0.7%			
llumination (0.7 /1.0 field)		35%			
Chief Ray Angle		< 40.1 deg			
Lens Component		6P + T-Lens			

Last free form *lens* helps to reduce thickness or front nose diameter while keeping good optical quality; IR cut filter integrated onto bottom of TLens®

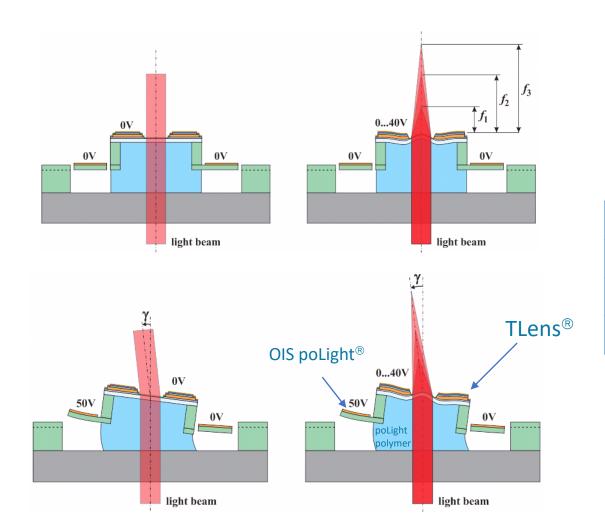


Wide FOV TLens® Add-In design (big format sensor)

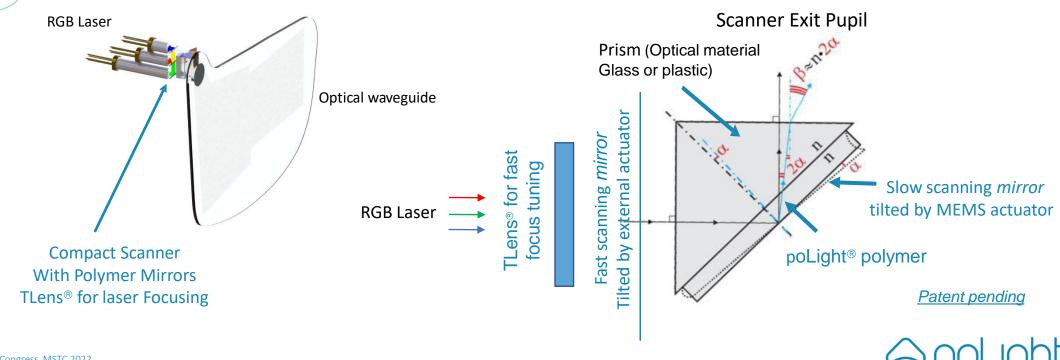
Performances

Parameters		Information	Performances	
Construction		7P		
TLens® type		Silver		
Sensor Format		Over 40Mpixel		
Sensor Pixel size		1/1.5" sensor		
Wavelenght range		400 - 700		
F.No		2.2		
Total Track length		7.2 mm		
EFL		2.96 mm		
	Horizontal (deg)	108		
View Angle	Vertical (deg)	93		
	Diagonal (deg)	120		
		500 lp/mm	24%	
	On Axis	250 lp/mm	55%	
MTF		125 lp/mm	74%	
IVIIF	80% Field (T/S)	500 lp/mm	1%	0%
		250 lp/mm	37%	0%
		125 lp/mm	65%	34%
Distortion	Optical distortion	2%		
Distortion	TV distortion	1.2%		
Relative Illumination (Ref. IH=1)		@inf 14.6%		1.6%
Chief Ray Angle Deviation limit		38 deg max		
Maximum Image Circle (MIC)		10.48 (122 deg)		
IR filter thickness		0.21 mm		
Focusing range of using silver TLens®		INF10 cm		

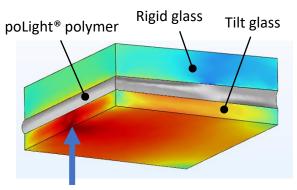
Principal Layout



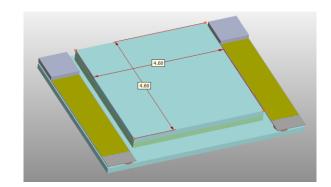
poLight® OIS-AF solution

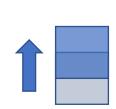

Optical power [dpt]		Voltage on the TLens® [V]		
		0	40	
Voltage on the OIC [V]	0	-3.22	13.01	
Voltage on the OIS [V]	50	-3.23	13.01	
Deflection angle [degrees]		Voltage on the TLens [®] [V]		
		0	40	
Voltage on the OIS [V]	0	0	0	
	50	1.1	1.1	
	50	1.1	1.1	

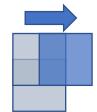
Size < 7 x 7 mm and 0.8 mm thickness

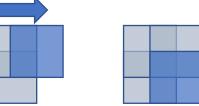


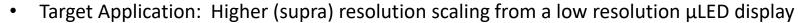
Projection laser display focusing concept


- Ultra compact RGB lasers with TLens® focus tuning
- 1 fast scanning x-axis: Small 1D scanning mirror with external actuator
- 1 slow scanning y-axis: Large 1D scanning mirror with poLight® polymer & MEMS actuator
- Usable with different Waveguide types (SRG or VHG, i.e. holographic mirror)

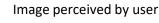



Tunable wedge concept for supra resolution




Actuation force at edge of tilt glass

- Key dimensions of simulation example:
 - Polymer thickness 200um
 - ✓ Tilt glass thickness 200um
 - Glass size 4.6x4.6mm
 - Useful aperture 4.0mm


Further optimisation of dimensions is possible, according to actuation force and stroke. Based on below table, actuation force and stroke should be within reach of piezo technology.

	Force (N)	Mechanical	Optical ray	WFE	Stroke um
	roice (iv)	tilt in deg	tilt in deg	VVFC	Stroke um
	0	0.000	0.000	0.00	0.0
	0.001	0.003	0.002	0.84	0.1
	0.002	0.005	0.003	1.69	0.3
Г	0.01	0.027	0.015	8.40	1.4
L	0.02	0.054	0.030	16.74	2.7
	0.03	0.081	0.045	25.03	4.1

Projected pixel

